Электротехнический портал Элекаб - справочник электрика, энергетика.

О проекте
Авторам
Реклама на портале

 
Главная | Справочник | Схемотека | Нормативы | Форум | Статьи | Новости | Выставки | Пресс-релизы |




Главная >> Справочник электрика >> Низковольтная аппаратура. >> Принципы выполнения защиты от перенапряжений. Общие положения.

Принципы выполнения защиты от перенапряжений. Общие положения.

Защита от волновых (грозовых и коммутационных) перенапряжений является важной составной частью системы электробезопасности и в связи с необыкновенно высоким темпом распространения самой разнообразной электронной техники и компьютеров приобретает все большее значение.

Нормативная база по системам защиты от грозовых и коммутационных перенапряжений для сетей электроснабжения низкого напряжения до настоящего времени разработана недостаточно.

В ПУЭ (7-е изд., п. 7.1.22) содержится следующее требование:

«…При воздушном вводе должны устанавливаться ограничители импульсных перенапряжений».

Технический комитет Международной электротехнической комиссии − ТС 37 разработал стандарты по защите от волновых грозовых и коммутационных  перенапряжений − МЭК 61647 - 1, 2, 3, 4, МЭК 61643-1, 2,  МЭК 61644-1,2.

На основе стандарта МЭК 61643-1 (1998-02) «Устройства защиты от волн перенапряжения, для низковольтных систем распределения электро­энергии. Эксплуатационные требования и методы испытания» был разрабо­тан, в частности, немецкий стандарт VDE 0675 Ч.6. «Разрядники и устрой­ства защиты от перенапряжений для сетей переменного тока 100−1000 В».

В России системы грозозащиты регламентируются «Инструкцией по устройству молниезащиты зданий и сооружений (РД 34.21.122−87)».

ГОСТ Р 50571.19-2000 (МЭК 60364-4-443-95), предписывает установку ограничителей для защиты электроустановок от импульсных перенапряжений в случаях, когда установка питается от воздушной линии или включает в себя наружный провод  при числе грозовых дней в году более 25. Уровень защитного устройства при этом должен быть не выше 1,5 кВ для однофазной сети 220 В и 2,5 кВ для трехфазной сети 380 В.

Грозозащита является одним из разделов комплекса задач по обеспече­нию электромагнитной совместимости.

В настоящее время общепринятой считается зонная концепция защиты от перенапряжений (МЭК 1024).

Существует различие между внешней и внутренней грозозащитой.

Внешняя грозозащита предназначена для защиты зданий и других объектов при прямых ударах молнии.

Эта защита представляет собой один или несколько низкоомных и малоиндуктивных путей тока молнии на зем­лю (молниеотвод, состоящий из токоприемника, токоотвода и заземлите­ля).

Внешняя грозозащита является классической и выполняется в соответствии с действующими нормами.

Внутренняя грозозащита защищает электрические установки и электронные приборы внутри зданий от частичных токов молнии, от коммута­ционных, грозовых перенапряжений и повышения потенциала в системе за­земления. Кроме того, внутренняя грозозащита обеспечивает защиту от воз­действий, вызванных ударами молний, электромагнитных полей.

Для внут­ренней грозозащиты основным условием является наличие эффективной системы заземления. Внутренняя грозозащита приобрела значение лишь в последние годы в связи с широким распространением микроэлектроники.

Границы эшелонированных защитных зон в здании образуются устройствами внешней грозозащиты, стенами зданий (металлическими фасадами, арматурой несущих стен и др.), внутренними экранированными помеще­ниями, измерительными камерами, корпусами приборов и т.д.

На рис. 11.1 представлена схема питания электроустановки со ступенчатой системой защиты от перенапряжений. На главном вводе после груп­пы предохранителей между каждым фазным проводником и главной ши­ной заземления включены искровые разрядники. При импульсах перенапряжений, поступающих по проводам сети, или при повышениях потенциала точки А во время прямого удара молнии разрядники срабатывают и пропускают заряд на землю.

При ударе молнии потенциал точки А относительно удаленного заземлителя, например, заземлителя трансформатора источника питания, может достигать миллиона вольт. Однако напряжение между фазами сети и глав­ной заземляющей шины не превысит значение напряжения срабатывания искровых разрядников. Это означает, что вся внутренняя электропроводка испытывает одинаковое повышение потенциала.

Допустимо также предположить, что при соотношении сопротивлений заземлителя и проводов сети 1:10 лишь 10 % тока молнии поступает в распределительную сеть электроустановки.

Наряду с классическими разрядниками во внутренней грозозащите применяются ограничители перенапряжений (ОПН), состоящие из параллельно соединенных искрового разрядника и варистора.

Варистор ограничивает перенапряжения, вызванные дальними ударами молний, искровой разрядник срабатывает при прямом ударе молнии, если из-за больших токов на варисторе остается достаточ­ное высокое остающееся напряжение.

Схема питания электроустановки со ступенчатой системой защиты от перенапряжений

Рис. 11.1. Схема питания электроустановки со ступенчатой системой  защиты от  перенапряжений

 

При необходимости, в областях с высокой грозовой активностью, остающиеся перенапряжения на после­дующих зонах снижают дополнительно включенными варисторными или комбинированными ОПН с различными параметрами, устанавливаемыми на границах зон. При этом для развязки ступеней защиты применяют специальные, включаемые последовательно в линию индуктивности.

Благодаря рационально эшелонированной защите можно, как и в сетях высокого напряжения достичь требуемой координации изоляции.

В российских нормативных документах указания о применении ОПН содержатся во «Временных указаниях по применению УЗО в электроустановках зданий» (И.П. от 29.04.97 № 42-6/9-ЭТ).

Поставщики низковольтной аппаратуры
Производители низковольтной аппаратуры
Предложения компаний по поставке низковольтной аппаратуры
Форум по применению низковольтной аппаратуры
Госты. Изоляторы.
Госты. Аппараты низковольтные.


Бренд Legrand на ЭлектроПрофи

Ждём вас за покупками со скидкой -20% в "АВС-электро" вашего города.

Перейти на сайт